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ABSTRACT 
We consider the effect of a coaugmented idempotent functor J in the the 
category of groups or G-modules where G is a fixed group. We are inter- 
ested in the 'extent' to which such functors change the structure of the 
objects to which they are applied. Some positive results are obtained and 
examples are given concerning the cardinality and structure of J(A) in 
terms of the cardinality and structure of A, where the latter is a torsion 
abelian group. For non-abelian groups some partial results and examples 
are given connecting the nilpotency classes and the varieties of a group 
G and J(G). Similar but stronger results are obtained in the category of 
G-modules. 

I n t r o d u c t i o n  
This  paper  deals with the behavior of localization functors in the categories of 

groups, abe l ian  groups and  G-modules  for a fixed group G. Nevertheless, most  

of the results  apply to coaugmented idempotent  functors.  The  main  interest  is in 

the extent  to which such functors preserve the algebraic or even the under ly ing  

set s t ruc ture  of the objects  to which they are applied. It  is shown (see 2.8) 

tha t  the cardinal i ty  of an  abel ian  torsion group cannot  increase arb i t rar i ly  after 

localization.  For a general group the group s t ructure  may vastly change after 

local izat ion (see 3.4) bu t  for certain n i lpotent  groups the opposite happens  (3.3). 

Similar  results  hold for G-modules  (4.2 and 4.5). 
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1. I d e m p o t e n t  c o a u g m e n t e d  f u n c t o r s  

Let C be a category. A coaugmented functor F is a functor F: C -+ C together 

with a natural transformation a: Id -+  F called coaugmentation. The coaug- 

mentation is called idempotent if aFX, F(ax): F X  -+ F F X  are equal and are 

an isomorphism. Given a coaugmented idempotent functor F, a local  object 

is an object T in C isomorphic with F X  for some X E C. An F - e q u i v a l e n c e  

is a morphism f :  X--~ Y in C which becomes an isomorphism after applying 

F.  Clearly the coaugmentation is always an F-equivalence ax: X -+ FX .  From 

these definitions it follows that for every X E C and every local object T there is 

a bijection a*: Homc(FX, T) -+ Homc(X,T).  This is referred to as the univer- 

sality of a. Coaugmented idempotent functors will be denoted CIF's. 

Very frequent examples of CIF's are localization functors with respect to 

maps. Given a morphism f:  A --+ B in C, we define an object T to be f-local if 

f*: Homc(B,T)  ~ Homc(A,T)  is a bijection. A localization functor Lf: C -+ C 

(if it exists) is a CIF such that L f ( X )  is f-local for all X C C. For a more 

extensive discussion one may consult [3] or [1]. 

The results of this article were motivated by these functors but apply to all CIF. 

With this in mind, throughout the article (L, a) denotes a CIF. It is interesting 

to note that  it is still unknown whether all CIF's in the category of groups have 

the form Lf  for some f .  

Given (L, a), the following are immediate consequences of the definitions, hence 

only indications of their proofs will be given (if any). 

1.1. If ~: X -+ Y is a morphism in C where Y is local and ~ is an L-equivalence, 

then Y -~ LX.  

1.2. Assume ~: X -~ T is a morphism such that T is local and for every local 

object Y there is a bijection ~*: Homc(T,Y) -+ Homc(X,Y) .  Then T ~- L X  

and ~ represents the coaugmentation. 

1.3. Every retract of a local object is a local object. 

1.4. An object T is local if and only if a*: Hom(LX, T) -+ Hom(X,T)  is 

bijective for all X c C. 

1.5. Every inverse limit of local objects is a local object. 
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1.6. For a diagram {Xi}ici,  there is a natural isomorphism 

L(limXi) -+ L(limLXi).  
----4 ----4 

Proof'. Let g be the subcategory of local objects in C. Note that  L is left adjoint 

to the inclusion functor i: g -~ C and that the direct limit in the subcategory £ 

of local objects is given by lime{Xi} -- L(li_mc{Xi}). I 

Since throughout the article localization functors are used, it seems in place to 

remark on the existence of such functors. In fact, the category C has to satisfy 

mild conditions in order that the functors L S exist for all morphisms f in C. 

Assume that  C satisfies the following: 

(a) All limits and colimits exist. This implies that given a diagram {Xi}i~i  of 

objects in C, there is a bijection Homc(limiX~, Y) ~ limi Home(X/,  Y) for 
- - - +  ,9---- 

all Y e C (cf. [11], Theorem 2.7.2). 

(b) An object C C C is said to be A-small if A is an ordinal and for every A- 

diagram {X~}~<~ the natural map l imHomc(C, X~) ~ Home(C, I ~ X ~ )  

is a bijection. We assume that for every two objects A, B E C there exists 

an ordinal A such that  both A and B are A-small. 

Under these assumptions, an argument parallel to the one given in [5] chapter 1.B 

may be applied to construct LS for any f in the category d. For an object X E C 

and a set S, one should define X x S := Lis ts  x .  Then there is an adjunction 

Homc(X x S , Y )  ~ Homsets(S, Homc(X ,Y ) )  for all X , Y  e C. Now one should 

follow the construction given in [5] chapter 1.B, replacing all homotopy limits 

and colimits by limits and colimits and understanding expressions in the form 

A x X B = A x Home(B,  X) as above. A detailed construction can be found in 

[9]. 

Finally, notice that  the categories of (abelian) groups and G-modules for a 

fixed group G all satisfy conditions (a) and (b), hence localization functors exist 

there. We thus freely use localization functors in these three categories. 

For the following, C denotes one of the categories of groups, abelian groups or 

G-modules. Thus we feel free to use the underlying set structure of the objects 

in C and hence talk about 'images' of maps etc. Throughout L is a CIF and a is 

its coaugmentation. 

LEMMA 1.7: Let G be an object of C and a: G -+ LG be the coaugmentation. 

Assume that T is a local subobject of LG. If im(a) C_ T then T = LG. 

Proof." Factor a through T, i.e. write a = j~ where j: T -+ LG is the inclusion 

map and 5: G -+ T is the restriction of the range of a to T. By universality of 
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LG,  there exists a map ~ rendering the following diagram commutative. 

G a , T  J * LG 

°1/ 
L G  

However a = j a  = j ~ a  implies j ~  = 1LG, in particular j is an epimorphism, 

hence an isomorphism. | 

1.8. Every direct factor of a local object in C is local. Further, if G C C and 

im(a) C S where S is a direct factor of LG, then S = LG. 

1.9. Let G1 , . . .  ,Gn be G-modules (or abelian groups) and let ai: Gi -+ LG~ 

be their coaugmentation maps. Then L(G1 @ . . .  @ Gn) ~ LG1 ~ . . . (~ LGn and 

under this isomorphism aGI~...~G~ = aG1 • "'" ~ a c , .  

1.10. If ~: T -+ S is a homomorphism of local objects then ker ~ is also local. 

1.11. If G is a subobject of T where T is local, then the coaugmentation 

a: G -+ L G  is a monomorphism. 

Proofs: For the first assertion of 1.8 use 1.3. For the second assertion use the 

first one together with 1.7. 

For the proof of 1.9 note that  LG1 × . . .  × LG~ is local. Therefore it is enough to 
a l  X . . . X a n  show that  G1 × " "  × Gn --+ LG1 × "'" × LGn satisfies the universal property 

with respect to all local objects. Indeed for every local object T we have 

Hom(LG1 ~ . . .  ~ LGn,  T)  ~- " ]-Ii Hom(LGi, T) 

(a1¢.--~o)" 1 1 ~ - 

Horn(G1 @.- .  @ Gn,T)  ~_ * [ I i  Uom(G~,T). 

For 1.10 use 1.5 and the diagram {1 -~ T ~ S }  where 1 denotes the trivial group 

or G-module. Note that  always L(1) = 1. For the proof of 1.11, note that  the 

inclusion j :  G -+ T has a factorization G2~LG -+ T .  | 

2. Local izat ion of  abel ian groups 

In this section (L, a) denotes a CIF in the category Ab of abelian groups. In this 

section, unless otherwise stated, by the word group we mean an abelian group. 

It wilt be shown (Theorem 2.3) that  if G is a bounded group (cf. [6]) then LG is a 

quotient group of G. A similar result applies for all divisible groups (Lemma 2.1). 
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The latter fact is the key to Theorem 2.4 stating that  if G is a reduced group 

(cf. [6]) then LG is also reduced and furthermore ILGI < tGI ~o. In particular it 

follows (Corollary 2.8) that  if G is a torsion group then ILGI < IGI ~°. 

Recall tha t  every abelian group G is a direct sum G = D @ R where D is 

divisible and R is reduced (cf. [6], sect. 21). In the light of 1.9, we may consider 

separately the case of localization of divisible groups and the case of localization 

of reduced groups. 

LEMMA 2.1: Let D be a divisible abelian group. Then a: D - +  L D  is an 

epimorphism. 

Proo~ Since D is divisible so is im(a), and therefore it is a direct summand in 

LD. But by 1.8 it follows that  im(a) = LD. | 

In view of this lemma it is now obvious that  divisibility is preserved under 

localization. Another useful consequence is that  

f Z(p ~ )  if Z(p ~ )  is local 
L (Z(p~) )  

0 otherwise 

which follows from the fact that  the quasicyclic groups Z(p ~ )  (cf. [6]) are divisible 

and their quotients are either 0 or isomorphic with themselves. 

PROPOSITION 2.2: Let G = ( ~ < ~  D~ where D~ are local divisible groups. Then 

G is a local group. 

Proof." Clearly G is divisible, i.e. an iujective object in the abelian category .db, 

thus it is a direct summand of 1-I~<x Do. The result follows from 1.5 and 1.8. 
| 

THEOREM 2.3: Let G be a bounded abelian group. Then a: G -+  LG is an 

epimorphism. 

Proof: Note that  every bounded abelian group is a finite direct sum of its p- 

components,  so it suffices by 1.9 to prove the result for bounded abelian p-groups. 

Let, then, G be a bounded abelian p-group and let C be the cokernel in 

G-~LG -+ C. Clearly LG and C are bounded abelian p-groups since the 

exponent of G annihilates LG. Moreover, 1.6 implies that  LC = 0. Likewise, L 

kills all quotients of C. 

Now we prove that  C = 0. Assume to the contrary that  C ~ 0. Then clearly 

LG ¢ O. Therefore LG contains a subgroup isomorphic with Z/p. From 1.1 it 

follows that  L(Z/p)  7 ~ O. On the other hand, since we assume C ¢ O, Z ip  is 

clearly a quotient of C, hence it is killed by L, a contradiction. | 
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We now come to the main result of this section. It  gives an answer to the 

question concerning the cardinality of the localization of a torsion group. 

THEOREM 2.4: Let G be a reduced abelian torsion group. Then LG is ~ reduced 

abelian group and [LG[ <_ ]G[ ~°. 

LEMMA 2.5: Let K be an abelian group and p a prime. Assume Z/p C K and 

Horn(H, K)  = 0 for some group H. Then H is p-divisible. 

Proo~ Assume to the contrary that  pH ~ H. The composite H-+H/pH -~ 
(~Z/p-+Z/p  C K is a non-trivial homomorphism H -~ K,  contradicting 

Hom(H,  K)  = 0. | 

LEMMA 2.6: Let G be a reduced abelian group and let H <_ G such that  G / H  

is divisible. Then IGI ~ IHI ~°. 

Proof." Compare  [6] sect. 34, exercise 9. A detailed proof may be found 

in [9]. | 

PROPOSITION 2.7: If  Z(p °°) is local, then every abe//an p-group is local. 

Proof." Let G be an abelian p-group. Let E be its divisible-hull (cf. [6], sect. 24). 

Clearly E ~ ~ x  7"(i° °~) and similarly E/G. By Proposition 2.2 both E and E / G  

are local. Note tha t  G = ker (E--+ E/G)  and use 1.10 to conclude that  G is 

local. | 

Proof of Theorem 2.4: Let G be an abelian reduced torsion group and let Up 

be its p-component.  We have a direct sum representation G = (~p Up. We may 

assume that  if L(Gq) = 0 for some prime q, then Ga = 0 because L((~p Gp) 

Let P be the set of primes for which Z(p °°) is local, and let Q be the set of 

primes for which Z(p °°) is not local, in particular L(7~(p°°)) = 0 for all p E Q. 

Now define T = ~]~peP Gp, S = ~ q e Q  Gq'~ then G = T @ S. 

CLAIM: T is local. 

Proof." Let E be the divisible-hull of T. Then E TM ~ p e p ( ~ p  Z(P°~)) , T c_ E 

and E / T  is divisible. Clearly E / T  = ~ v e p ( { ~ p  Z(p~)) .  Proposition 2.1 implies 

that  E and E / T  are local because both  groups are direct sums of the local groups 

Z(p°°). The claim follows by 1.10. 

CLAIM: LS  is reduced. 

Proof'. Let a: S --~ LS  be the coaugmentation map, and assume LS  is not re- 

duced. Represent LS = D @ R where D is divisible and R is reduced. Note that  
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D and R are local. For every p E P multiplication by p is an automorphism of 

S, therefore it is an automorphism of LS, and it follows that Z(p °°) ~ LS. For 

every q E Q, Z(q ~ )  is not local by assumption and in particular Z(q ~ )  ~ LS. 

It follows that  D is torsion-free, i.e. D -~ ( ~  Q. It is now clear that  im(a) c_ R 

and by Proposition 1.11, LS = R, i.e. LS is reduced as the claim states. 

Notice that  LG ~ LS  @ LT ~- LS  @ T where LS is reduced. However T is also 

reduced, being a direct summand of G, which is reduced by assumption. This 

proves the first assertion of the theorem. 

Let H = im(a) C_ LG. We now show that L G / H  is divisible. It suffices to 

show that  L G / H  is p-divisible for every prime p. Let p be a prime and Gp 

the p-component of G. If Gp = 0 then G is uniquely p-divisible as it is a torsion 

group. This implies that LG is also uniquely p-divisible, and therefore L G / H  is p- 

divisible. Now consider the case Gp ~ O. By assumption L(Gp) ~ 0 and therefore 

the homomorphism cap: GB ~ L(Gp) is not trivial. In particular im(a) ~ 0 

and it follows that  L(Gp) contains a subgroup of order p. Furthermore, LG 

contains such a subgroup because LG = L(Gp (~ U) ~- L(Gp) • L(U) for a suitable 

U. Using 1.6 we conclude that Hom(LG/H, LG) --~ nom(L(cokera ) ,LG)  = 0 

and, by Lemma 2.5, L G / H  is p-divisible. Now use Lemma 2.6 to conclude that  

ILG[ < IH] ~° < IGI ~°. I 

COROLLARY 2.8: Let G be an abelian torsion group. Then ILG[ <_ IGI s°. 

Proof: Represent G = D ® R where D is divisible and R is reduced. The 

corollary follows from Theorem 2.4, Lemma 2.1 and Proposition 1.9. I 

One may be tempted to believe that in Theorem 2.4 the assumption that  G is 

torsion implies that  LG is also a torsion group. This is however false as is shown 

in the following examples. 

Example 2.9: Let Pl,P2,.. .  be an ordering of the positive primes. Let S = 

e ~  Z/pi and let P = 1-L Z/p~. It is not hard to check that S is reduced and that  

P / S  is divisible, hence the inclusion j:  S --+ P induces a bijection 

j*: Hom(P ,P )  -~ Hom(S,P) .  

Thus, P is not torsion and Lj(S) ~ P. In fact, P = Ex t (Q/Z ,S )  where 

E x t ( Q / Z , - )  is the "total-Ext-completion" which is a CIF ([12] or [2] p. 165). 

Even if G is a p-group, LG need not be one. To show this choose a prime p 

and take G = ~ > 1  Z/P ~" The Ext-completion functor Ext(Z(p°¢), - )  is a CIF 

(see [2], pp. 165, 166 and 172). The natural map f :  G --+ Ext (Z(p~) ,  G) satisfies 
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L/(G) ~ Ext (Z(p~) ,G)  and example 4.2(ii) on page 180 in [2] shows that the 

latter group is not a torsion group. 

We remark that  torsion free groups behave very differently. For example, 

j :  E --+ Q is a localizing map where Z is reduced but Q is divisible. As shown in 

[4] one cannot bound [LZ I. 

3. N i l p o t e n c y  and words in the  category of  groups 

We show in Theorem 3.3 that localization preserves nilpotency class 2. This was 

first proved by W. G. Dwyer and E. D. Farjoun (unpublished). The result is 

sharpened by showing that in fact, if G is nilpotent of class 2 then LG lies in 

the variety defined by G (cf. [10]), namely every law in G is also a law in LG. 

Note that  in particular it follows that applying a CIF to an abelian group yields 

an abelian group. No generalization of the above result is known for arbitrary 

nilpotent groups. 

Let H be a group. We shall denote the center of H by Z(H).  The upper 

central series of H is denoted by Zi(H) where Zo(H) = 1 and Zi+I(H)/Zi(H) = 

Z(H/Zi (H)) .  If H is nilpotent, c(H) denotes its nilpotency class. 

There is a map #H: H x Z ( H ) ~  H defined by ltH(h,z) = hz, which is 

evidently a group homomorphism since z is in the center. 

LEMMA 3.1: Let G be local. Then Z(G) and Z 2(G) are local. 

Proof." First, note that Z(G) is the inverse limit of the diagram consisting of 

the object G alone, and with one arrow for each inner automorphism of G. Then 

1.5 shows that  Z(G) is local. 

For every x C G define a homomorphism ¢~: G x Z(G) --+ G by Cx(g, z) = 

#a(g*,z)  = g~z = x - l g x  • z. To see that Z2(G) is local, observe that it is the 

pullback in the following diagram, in which j is the inclusion, A(g) = I-[,ca(g, g) 

and e(z) = 1-I,ea(z, [x, z]). 

Z2(G) J . a 

1-I,;ec(a x z (a) )  IL~(1G×,~ ). I ]~a (a  x a). 

PROPOSITION 3.2: Let G be a group and let a: G --+ LG be the coaugmentation. 

Then a(Z2(G)) C_ Z2(LG). 
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Proo~ For w • Z2(G) define a group homomorphism ~ :  G -+ Z(G) by ~ ( x )  

= [x, w]. We obtain a commutat ive square in which ~ extends alz(a ) o ~ :  

LG Z(La). 

Let us compute ~ .  There is a commutative diagram: 

G a . G x G  l.×~,. . G x Z ( G )  "~ , G 

LG ~ LG x LG 1Lcxe,o' LG x Z(LG) ~ LG 

where the composite in the top row is precisely the map g ~+ w - l a w .  The 

composite in the bo t tom row is the map x ~ x ~ ( x ) .  Defining ffJ: LG --+ LG 

by the formula ff~(x) = x a(~) renders the outer rectangle in the above diagram 

commutative,  hence the composite in the bot tom row equals ffJ. This yields 

~ , ( x )  = [x,a(w)], and in particular [LG, w] C Z(LG).  As w • Z2(G) was 

arbi trary we conclude that  [LG, a(Z2(G))] C Z(LG),  i.e. a(Z2(G)) C Z2(LG). 
| 

THEOREM 3.3: Let G be nilpotent of class at most 2. Then LG is nilpotent of 

class at most 2. Furthermore, if  W(Xl , . . .  , x,~) is a word which is satisfied in G, 

namely the verbal subgroup w(G) vanishes (see [i0]), then w is satisfied in LG. 

Proo~ By Lemma 3.1, Z2(LG) is local and by Lemma 3.2, a(G) = a(Z2(G)) C 

Z2(LG). Use Lemma 1.7 to conclude that  Z2(LG) = LG. 

For the second assertion of the theorem assume first that  the word w has the 

form w(x) = x p for some integer p. There exists an integer kp such that  

(xy) p = xPyP[y,x] k~ modF3G.  

This follows from (xy) p - xPy p (modF2G) and due to 10.2.3 in [7] (alternatively 

use the results of chapter 11 there). 

From the assumption that  w is satisfied in G, we have (xy) p -- xPy p = 1 for all 

x, y C G, hence [y, x] kÈ = 1 for all x, y E G. Since c(LG) _< 2 for every x E LG, 

there is a homomorphism ~x(Y) = [Y, x] kp. If x E im(a) then ~ oa  is trivial, and 

therefore ~ ,  is trivial. It follows that  [LG, im(a)] k~ = 1. Now, given y E LG we 
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define Cy: LG ~ Z(LG)  by the formula Cy(x) = [y, x] k,. Clearly ~y o a  is tr ivial ,  

and this shows tha t  [LG, LG] k, = 1. Now, since c(LG) < 2, 

(xy) p = xPyP[y,x] kÈ = xPy p (x ,y  c LG). 

I t  follows tha t  ¢ : x ~ x p is a homomorph i sm in LG. Since ¢ o a is trivial,  ¢ is 

tr ivial  and the  t heo rem is proved in the case w(x)  = x p. 

Consider  now the general case. Note tha t  given a word w ( x l , . . .  ,xn) it is 

equivalent  to a word 

A,J . T ~ ' " x ~ n "  H c~,j x 1 

i < j < n  

where T is a p roduc t  of commuta to r s  of length greater  t han  2, c~,j = [x~, xj] 

and f~,j are integers. Observe tha t  T vanishes in G and LG as c(G),  c(LG) < 2. 
e, holds in G Choose 1 < i < n and set xj = 1 for a l l j  =~ i. We see tha t  x i 

c/". j holds in G and we are and therefore in LG. It  follows tha t  the word 1-L<j ~,~ 

led to show tha t  it holds in LG. Let i , j  be integers such tha t  fi,j 7 ~ O. By 

set t ing xe = 1 for all ~ 7~ i , j  we see tha t  [xi,xj] A,j = 1 in G and we a t t e m p t  

to show tha t  this is the  case in LG. Given x E a(G) the m a p  y F-~ [y, x]f~.J 

is a h o m o m o r p h i s m  LG ~ Z(LG)  which vanishes on a(G) and consequent ly  

on LG, namely  [a(G), LG]I',J = 1. Now apply  the same a rgument  for the m a p  

x ~+ [x, y]A.J where y E LG to prove tha t  [LG, LG]/~.~ = 1, as desired. It  follows 

tha t  this h o m o m o r p h i s m  is tr ivial  in LG, as desired. | 

I t  is not  known, in general, whether  LG is ni lpotent  whenever  G is. Notice 

t ha t  the  proof  of Theo rem 3.3 follows the pat tern:  

1. Show t h a t  if T is a local group then  Zn(T)  are local groups (n :> 1). 

2. Show tha t  if a: G --+ LG is the coaugmenta t ion  then a(Zr~(G)) C_ Z,~(LG). 

3. Conclude t ha t  if G is ni lpotent  of class n then LG is ni lpotent  of class _< n by  

using L e m m a  1.7. 

No general izat ion of the  proofs given for the cases n = 1, 2 is known. It  is noted  

t ha t  if G is n i lpotent  and it is known tha t  LG is ni lpotent  then  c(LG) <_ c(G) 

(see next  theorem) .  This  gives evidence to the credibili ty of the above scheme of 

proving t ha t  LG is n i lpotent  whenever G is. 

As for the  word problem,  let the previous theorem not mislead. The  next  

example  shows tha t  in general LG need not  lie in the  variety defined by  G. In  

this example  the groups are not ni lpotent ,  and so we still do not know if this is 

t rue  when G (or even LG) are nilpotent .  
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Example 3.4: Let Sn and An denote the Symmetric and Alternating groups on 

n letters respectively. The standard inclusions j: Sn --+ Sn+l and k: An --+ An+l 

for n > 6 satisfy Lj(Sn)  ~ Sn+l and Lk(An) TM An+l. In particular, in $10 the 

word w(x)  = x 1°! holds, but it does not hold in Sin. Moreover, $11 = Lj(SlO) 

contains elements of order 11 although $10 does not. 

Consider j:  Sn --+ Sn+l. We show that every map ~: Sn --+ Sn+l extends 

uniquely to a map Sn+I --+ Sn+l. Observe that every ~: S~ --+ Sn+l is either triv- 

ial, has An as its kernel or is an embedding. If ~ is trivial then any extension must 

have Sn in its kernel, and hence is trivial. If ker ~ = An then there exists a unique 

isomorphism im(~) TM C2 and the composite Sn+l --+ Sn+l/An+l ~ C2 ~ im(qo) is 

a unique extension for ~. Finally, consider the case ~ is injective. Let H = im(qo). 

The action of Sn+l on the (say, right) cosets of H gives rise to an automorphism 

0: Sn+l --+ Sn+l which sends H to the standard copy of Sn in Sn+l. Thus, the 

composite 0 o ~ may be considered as an automorphism of Sn. 

Clearly, showing that  ~ has a unique extension is equivalent to showing that  

the composite Oo~ has a unique extension to Sn+l. The assumption n > 6 implies 

that  Sn is complete (see [13], Theorem 7.3). Therefore there exists a E Sn such 

that 0 o ~ = ~ E Inn (Sn). It follows that T~ E Inn (Sn+l) is an extension of 

0 o ~. If p is another extension, then Jim(p)[ > 2 implies that p C Aut (Sn+l). 

Completeness of Sn+l implies that p = ~-~ E Inn (S~+1) for some/3 E Sn+l. It 

now follows that  T ~ - I  C Inn (Sn+l) induces the identity on Sn, namely a~  -1 E 

Cs~+~ (Sn) = 1. Therefore p = T~ = T~ as desired. 

The proof that  k: A~ --+ An+l localizes is similar. We only note that  all 

automorphisms of An are induced by conjugation in Sn (note that n > 6). 

THEOREM 3.5: Let a: G --+ LG be the coaugmentation and assumeG is nilpotent 
of  class c. I f  n G  is nilpotent then c(LG) < c(G). In fact c(LG) = c(im(a)). 

Recall that  for all 1 <_ i < c(G), FiG C_ Z~-i+I(G) (cf. [7] 10.2.2) where 

FiG denotes the lower central series of G. Another well known fact is that  

IF/G, FJG] C_ Fi+JG. In the sequel we shall also use the fact that F i is generated 

by the commutators of length i (cf. [7] Theorem 10.2.1). We also recall the 

commutator  identities: [xy, z] = [x, z]Y[y, z], [x, yz] = [z, z][x, y]Z and x[x, y] -- 

X y . 

It must also be noted that  we use the convention that  commutators are written 

left-normed, namely Ix1, x 2 , . . . ,  Xn] = [[''" [[Xl, X2], X3],""" ], Xn]. 

LEMMA 3.6: Let K be an arbitrary group. I f  z E FeK, then for all y E K and 
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all x l , . . .  ,Xn C K the following holds: 

[YZ, X l , . . .  ,Xn] ~- [y, X l , . . .  ,Xn]" [Z, X I , . . .  ,Xn] (modF~+n+lK) .  

Proof." Use induct ion on n. For n -- 1 we have 

[yz, xl] -- [y, Xl] z [2;, Xl] : [y, Xl][y , Xl ,  Z][Z, Xl] : [y, xl][z, xl] (mod F~+2K). 

Induc t ion  step for n + 1: Denote  

y(~) --[y, x l , . . .  ,x~] C Fn+IK ,  

z (n) = [ z ,  x l , . . .  , xn] e r~+~K. 
Use the induct ion hypothesis  to compute:  

[yz, X l , . . .  , Xn+l] = [y(n) . z(n), Xn+l  ] (mod F e+~+2) 

= [y(n) x~+l]z(~). [z(~),x,~+l] ( m o d F  ~+n+2) 

[y(n) ,xn+l] .  [z(n),xn+l] (modFe+~+2).  | 

PROPOSITION 3.7: I l K  is nilpotent of class c+ 1, then for any  choice of elements 

x l , . .  . , xc in K,  and any choice of i, the mapping y ~-~ [Xl, • • • , xi, y, x i + l , . .  • , xc] 

is a homomorphism K -~ Z (K) .  

Proof." Let u = [x l , . . .  ,xi]. Observe tha t  for every y , z  C G, 

[u, yz] = [u, z][u, y, z]. 

The  proof  follows from the above lemma together  with F~+IK = 1. | 

Proof of Theorem 3.5: Let H = im(a) and let c = c(H). Clearly c ~_ c(LG), and 

we prove tha t  equality holds. By assumption FCH ~ 1 and FC+IH = 1. Assume 

to the cont rary  tha t  c(LG) > c(H),  and let k = c(LG). By assumpt ion  FkLG 

1, but  as k > c, F k H  = 1. For X l , . . .  ,xk-1 E H we obtain  a homomorph i sm 

~: LG --+ Z(LG),  ~: y ~-~ [y, x~ , . . .  , Xk-1], which satisfies ~ ( H )  = 1, hence ~ is 

trivial. I t  follows tha t  

(1) [LG,H, . . .  ,I-Ij = 1. 

k -  1 t imes  

Now let xl  E LG and x2 , . . .  , xk-1 E H,  and define a map  ~: LG ~ Z(LG)  by 

the formula ~: y ~ [xl,y, x2 , . . .  ,xk-1]. Then ~p is a homomorph i sm by the 

above proposit ion,  and by (1) it satisfies ~ ( H )  = 1. Hence qz is trivial and we 

obtain  

[LG, LG,H,..: ,Hi = 1. 

k--2 times 

Repeat ing  this process k - 1 times we finally conclude tha t  FkLG = 1, which is 

a contradict ion.  | 
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4. W o r d s  a n d  n i l p o t e n c y  o f  G - m o d u l e s  

Recall  the  definit ion of a ni lpotent  G-module  from [8]. Th roughou t  this section 

IG denotes  the augmen ta t ion  ideal of the group-r ing ZG. We remark  t ha t  the  

ideals (IG) n are genera ted  as abel ian groups by the elements 

{(gl - 1 ) . . .  (gn -- 1): g l , . . .  ,gn E G} C ~j..  

A G-modu le  A is said to be ni lpotent  if (IG)nA = 0 for some n > 0. The  

ni lpotency class of A (cf. [8]) is denoted by c(A). 

Given a group G and an ordinal A one can construct  a transfini te uppe r  central  

series {Z~(G)}~<~ by induct ion as follows. Begin with  Zo(G) = 1. I f  c~ is a non- 

limit ordinal  then  define Z~(G) by Z~(G)/Z~_I(G) = Z(G/Z~_~). If a is a limit 

ordinal  then  Z~(G) = LJz<~ Z~(G). We say tha t  G has an exhaust ive  uppe r  

central  series if there  exists an ordinal ,k such tha t  Z~(G) = G. 

T h r o u g h o u t  this section (L, a) is a CIF  in the ca tegory  of G-modules  (G is 

fixed). I t  should be noted t ha t  given a G-module  A, then  LA does not mean  ap- 

pl icat ion of a CIF  in the  ca tegory  .Ab to the underlying group of A and obta in ing  

the G-s t ruc tu re  by functoriality. For example,  it is possible (as is the case in 

E x a m p l e  4.2) t ha t  the  underlying group of a G-modu le  A is Z/p whereas the  one 

of LA is Z/p ® Z/p, which is impossible for L: Ab  ~ Ab. 

THEOREM 4.1: Let A be a nilpotent G-module and assume that G has an 

exhaustive transfinite upper central series (e.g. G is nilpotent). Then LA is 

a nilpotent G-module, and c(LA) <_ c(A). 

Proof'. Let n be  an integer such tha t  (IG)nA = 0 and let A be an ordinal  such 

tha t  Z~(G) = G. Our  a im is to show tha t  ( IG)nLA = O. 

For every g E G let ~(g) = min{c~ < A: g E Za(G)} .  We abuse  no ta t ion  and 

write ( ( g l , - . . ,  gn) = ( ~ ( g l ) , . . - ,  ((gn)) for the n- tuple  ( g l , . . . ,  gn) ¢ G n. Well 

order  A ~ lexicographically:  (c~1,... , an)  -< (/31,...  ,/3n) if there  exists k < n such 

t ha t  (~i --/3~ for all i < k .and ak  < /~k. 

In order  to prove the theorem we must  show that ,  for all g l , . . .  ,g~ E G, 

(2) (gn - 1 ) . . .  (gl - 1)LA = O. 

We use induct ion on ~ ( g l , . . .  , g,~). Notice tha t  if ( ( g l , . . .  , g,~) = (0 , . . .  , 0) then  

(2) holds trivially. Assume (2) holds whenever  ¢ ( g l , . . -  ,gn) -< ( (1 , - . .  , Ca). We 

prove it for g l , . . .  , gn E G satisfying ( ( g l , . . .  , gn) = ( (1 , . . .  , Ca). 

Define (yet a m a p  of abel ian groups) O: LA --+ LA by 

q~(x)  - -  (gn  - 1 ) . . . ( g l  - 1 ) x .  
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We show tha t  (P is a G-homomorphism.  Namely, given t E G we must  show tha t  

4p(t. x) = t .  (I)(x) for all x c L A .  For convenience define zi = [gi, t] and note  tha t  

¢(zi)  < ~(gi) = ¢i. Also observe that ,  for all g E G, 

( g -  1)t = t (g  t - 1), 

g t _  1 = ( g -  1)([g,t] - 1) + ([g,t] - 1) + ( g -  1). 

Evident ly  O( tx )  = (g~ - 1 ) . . .  (gl - 1) tx  = t(gt~ - 1 ) . . .  (g~ - 1)x. Therefore,  in 

order  to show tha t  (I) commutes  with the action of t, it suffices to show tha t  

(3) (gt  _ l ) . . . ( g ~ _ l ) x = ( g , _ l ) . . . ( g l _ l ) x  ( x C L A ) .  

We now use induction to prove tha t  

(4) (gt _ 1 ) . . .  (g~ - 1)x = (gt _ 1 ) . . .  ( g { + l  - -  1 ) ( g / -  1 ) . . .  (gl - -  1)x (x e L A ) .  

If i -- 0 then  (4) is trivial. Assume (4) for i -- j - 1 (j > 0); we prove it for i = j .  

Observe tha t  

~ ( g l , " "  , g j+l ,Z j ,g j -1 , . . .  ,gn) "< (~1, . . .  ,~n), 

¢ ( g l , . . .  , g j + l , z j , g j , . . .  ,gn-1)  -~ ( ¢ 1 , - - - , ¢ n ) ,  

so by induct ion hypothesis  it follows tha t  

(gt  _ 1 ) . . .  (gJ - 1 ) (g j - i  - 1 ) . . .  (gl - 1)x 

= (9t  _ 1 ) . . .  ((gj - 1)(zj - 1 ) -  (zj - 1 ) -  (gj - 1))(gj-1 - 1 ) . . - ( g l  - 1)x 

= (gtn - 1 ) . . - ( g J+ l  - 1)(gj - 1 ) . . .  (gl - 1)x 

and the  induct ion step is complete (for the proof of (4)). 

Having proved (3) we deduce tha t  (I) is a G-module  homomorphism.  Since 

(I) o a = 0, where a is the coaugmentat ion,  it follows tha t  • = 0. This establishes 

the induct ion step in the proof of (2). | 

E x a m p l e  4.2: The  assumption tha t  G has an exhaustive upper  central  series 

cannot  be omit ted.  Let  V ---- (Fp) 2 be the two-dimensional vector space over the 

field Fp, p > 2, and let {e0, el} be the s tandard base. Let  H -- Aut (Y)  -- GL2(Fp) 

and let 

(5) G = S t a b H ( e o ) = { g C H : 9 = ( l o  ~ )  ,a , /3  C Fp ,~  ~ 0} .  
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Let U = <e0> be the one-dimensional subspace spanned by e0. View U and V 

as G-modules  and observe that  U is a trivial G-module.  We now claim tha t  the 

inclusion j :  U --+ V localizes, i.e. it induces an isomorphism j*: HomG(V, V) -+ 

HomG(U,V) .  To see this, we prove tha t  bo th  HomG(V,V)  and HomG(U,V) 

consist of scalar t ransformat ions  only. It is then immediate  tha t  j* is bijective. 

Indeed, let ~ 6 Homo(U,  V). Clearly ~(U) C_ U since U is the largest trivial 

submodule  of V. Hence ~ = Aj for some A E Fp. 

Now, let ~ E Homo(V,  V). By the argument  above ~(e0) = Ae0 for some A. 

Using the fact tha t  ~ commutes  with the action of all g E G, and using matrices 

g in the form given in (5) with a = 1 and /3  = ±1 (recall tha t  p > 2), it is easy 

to prove tha t  ~)(el) = Ael so ~ is indeed scalar. 

Al though U is a trivial module,  V is not nilpotent. Observe tha t  for g E G 

with c~ = 0,/3 = - 1  we have (g - 1)el = - 2 e l ,  therefore I G .  V D <el>. It then 

follows tha t  ( IG)nV  D <el} ¢ 0 for all n. This need not be surprising as one 

easily checks tha t  Z(G) = 1. 

A result closely related to tha t  of Theorem 3.5 is the following proposi t ion 

which is a special case of its succeeding one stat ing tha t  in some cases the word 

problem has a positive answer in the category of G-modules.  

PROPOSITION 4.3: Let A be a nilpotent G-module, and assume that LA  is also 

nilpotent. Then c(LA) <_ e(A). 

Proof.' Assume to the contrary that  n = e(LA) > c(A) = m. Let g l , . . .  ,gn--1 

be elements of G and define a function (of sets) ~: LA ~ LA  by 

~: x ~-+ (gl - 1 ) . . .  (gn-1 - -  1) 'X .  

For all h C G and x E LA,  (h - 1). ~(x) = ~((h  - 1)x) -- 0 because c(LA) = n. 

It  follows, by the definition of ~, tha t  h .  ~(x) -- ~(x) -- ~ ( h .  x), i.e. ~ is a 

G-homomorph i sm.  However, ~ c a = 0 where a: A -+ LA  is the coaugmenta t ion,  

hence ~ = 0. In other  words, ( I G ) n - I L A  -- 0, a contradiction. I 

THEOREM 4.4: Let A be a nilpotent G-module such that LA  is also nilpotent. 

I f  w ( x l , . .  . , xt) is a satistiable word in A, then it is also satistiable in LA.  

Proo£" Every word is clearly equivalent to a word 

W ( X l , . . .  , X t )  = r l X l  + " '"  + r t x t  where  ri 6 ZG.  

Replacing xj  = 0 for all j # i we see tha t  the words rixi are all satisfiable in 

A, and our problem reduces to showing tha t  if the word u(x) = r .  x (r e ZG) 
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is satisfiable in A then it is satisfiable in LA.  Let n = c(A). 

proposit ion,  c(LA)  < n. 

CLAIM: For all g l , . . .  ,gin E G, m < n and i > O, 

By the previous 

(6) [(gl  --  1 ) ' ' "  ( g i  - -  1 ) . r .  ( g i+ l  --  1 ) . . .  ( g m  - -  1) ] .  L A  -- 0 

where i f  i = 0 or i -- m it is understood that  there are no terms on the left or 

the right (respectively) o f  r. 

Applying  the claim for m = 0 we see tha t  r • L A  = 0, which is exactly s ta t ing 

tha t  the  word u(x)  -- r • x is satisfiable in LA,  as desired. 

Proo f  o f  the claim: We use (descending) induction on m star t ing with m = n. 

In this case, (gl - 1 ) . - .  (gi - 1 ) . r .  (gi+l - 1 ) - - - (gm - 1) E ( IG)  '~, and therefore 

by the  previous proposi t ion (6) holds for m = n. 

For the inductive step, assume tha t  (6) holds for 1 < m + 1 < n and we prove 

it for m. Let g l , . . -  ,gm be elements of G for which we wish to prove (6). Define 

a map  L A  --+ L A  by 

(7) ~: x ~+ (gl - 1 ) . . - ( g i  - 1 ) . r .  (gi+l - 1 ) . . .  ( g m -  1) " x .  

We wish to show ~a is a G-homomorphism.  Given g E G, the induct ion hypothesis  

and (7) imply tha t  (g - 1)~(x) = ~a((g - 1)x) = 0. This, in turn,  implies tha t  

~a(g. x) = ~a(x) = g .  ~(x),  namely, ~ is a G-homomorphism.  Since ~a o a = 0, 

where a: A --+ L A  is the coaugmentat ion,  it follows tha t  ~a -- 0. In other  words, 

[(gl -- 1 ) . . .  (gi - 1 ) . r .  (gi+l - 1 ) . . .  (gm - 1)]" L A  = 0 

and the inductive step is complete. This concludes the proof  of the claim and, 

consequently, the  proof  of the  theorem. | 

COROLLARY 4.5: Let  G have an exhaustive upper central series, and let A be 

a ni lpotent  G-module.  I f w ( x l , . . .  , x t )  is a word satisfiable in A, then it  is also 

satisfiable in LA .  | 
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